
Manual verification of Brabocoin hashes and signatures

Benne de Weger (TU/e)
b.m.m.d.weger@tue.nl

v0.3, November 3, 2021

1 Introduction

Brabocoin (https://brabocoin.org) is an educational cryptocurrency developed at TU/e
by Dennis van den Berg, David Dekker, Sophie van den Eerenbeemt and Sten Wessel as
their Bachelor Final Project [BDEW1]. One of the educational goals of Brabocoin is to
enable Brabocoin users to verify for themselves the cryptographic aspects, so that they can
build confidence in blockchain concepts at a technical level. That is why the Brabocoin GUI
(Graphical User Interface) has the ability to show the user the raw data of transactions and
blocks. To ease cryptographic verification and inspection of the contents of the Brabocoin
blockchain, the Brabocoin Viewer and Brabocoin Calculator have been developed, but it still
is not trivial how to use the three pieces of software together to do the verification succesfully.
This document fills this gap.

2 Software Installation

The Brabocoin software (currently brabocoin-0.4.1.exe and brabocoin-0.4.1.jar) can
be downloaded from https://brabocoin.org/download. It comes with its own user manual
[BDEW2]. Note that for ‘ordinary’ users it only makes sense to use the GUI version, not
the ‘headless’ version. On a Windows system the software should run without problems. It
has been tested successfully on Linux and MAC but we’ve also encountered cases (of Linux)
where we couldn’t get it running (in particular on a Raspberry Pi), so you’re on your own
there: no support is provided beyond what’s already in the manual. We strongly recommend
that you just install brabocoin-0.4.1.exe on Windows.

Note that the first time you start up Brabocoin a lot of data has to be fetched, and this will
take some time. Make a note of the location of the Brabocoin database, which on a Windows
system probably is something like
C:\Users\USERNAME\AppData\Local\Brabocoin\app\data\1\blocks\blk0.dat.

The Brabocoin Viewer software (currently BCVv1.0.exe and BCVv1.0.jar) and the Brabo-
coin Calculator software (currently BCCv1.0.exe and BCCv1.0.jar) can be downloaded from
https://brabocoin.org/bcc. They should run on any system that has a not too old java
version installed.

The Brabocoin Viewer works best if two other files are present in the directory where the
BCCv1.0 program resides:

• BrabocoinViewer.cfg, in which the location of the Brabocoin database should be given

1

https://brabocoin.org
https://brabocoin.org/download
https://brabocoin.org/bcc

in the following format:
[filename] C:\Users\USERNAME\AppData\Local\Brabocoin\app\data\1\blocks\blk0.dat

• BrabocoinViewerOwnerAddressList.txt, in which a list of Brabocoin addresses and
owner names can be provided, in the following format:
ADDRESS1;NAME1

ADDRESS2;NAME2

etc.

Examples of these two files can be downloaded from https://brabocoin.org/bcc. You can
edit both files in a simple ASCII text editor such as Notepad. In the file BrabocoinViewer.cfg
replace the file name by the location of the actual Brabocoin database on your system; prob-
ably you only have to replace USERNAME by your own Windows username.

3 Block 1947

As an example throughout this document we will be looking at block 1947 in the current
Brabocoin blockchain.

In the Brabocoin GUI, go to “Current state”, tab “Blockchain”, scroll down to “Height”
1947, and click on the line to select it. In the Brabocoin Viewer, manually enter “1947” in
the block height field of the Block View. See Figures 1 and 2.

Figure 1: Block 1947 as shown in the Brabocoin GUI.

2

https://brabocoin.org/bcc

Figure 2: Block 1947 as shown in the Brabocoin Viewer.

You should note the following:

• All “Hash” values start with 7 zeroes. More accurately, they are all smaller than the
“Target value” starting 0000000BEDC64B.... This is the result of the mining procedure.

• The “Hash” of the block (also called “Header hash” or “Block header hash”) is
0000000851FADAA527D54FFE73DA22B6716AD40ABD003B24362890AA267849E4.
You can copy it from the Brabocoin GUI to your computer’s clipboard by right-clicking
the selected “Hash” field and then clicking “Copy” (as shown in Figure 1). Also you
can copy it from the Brabocoin Viewer to your computer’s clipboard by right-clicking

3

the “block hash” field and then clicking “Copy” (as not shown in Figure 2). This copy
feature actually is implemented for many fields in the GUI windows of the two programs.

• The “Previous block hash” starting 00000007B63D8A3.... is the same as the “Hash”
of block 1946. This is the chaining idea of the blockchain.

• There is a “Merkle root” starting 24A38D24....

• There is a “Nonce” with value 16045017E4.

• There are two transactions: a “Coinbase transaction” and a normal “Transaction 1”.
The Brabocoin Viewer shows the transaction hashes, the coinbase transaction is always
the top one.

Next click “Show data”. This will bring up a window, see Figure 3, that contains the actual
raw block data in two formats: JSON and raw hex. JSON is a more human readable format
of the raw data, which shows the structure in there. It is clear that there are the following
fields: networkId, previousBlockHash, merkleRoot, targetValue, nonce, blockHeight,
transactions.

Figure 3: Block 1947 data.

4

080112220A2000000007B63D8A355FFCD59DD7377B2CA406C3118FF026AC9CED

82A022A8AF191A220A2024A38D24AFEDD645966B8449DCA5375A4FABF030F839

7522B2E5542025462D16221F0A1D0BEDC64B560508C7CC7DEDE336AF7E906E73

76DDA000000000000000002A0516045017E4309B0F3A270A080A030A0100109B

0F121B0A160A140C4673D52697552549E0C0DE1DDB35D265AF0C8310F2073AEE

030A260A220A20986E8F01C0E7C6D6428BF3E4C9E07FB148F7FF7AE8AF27A96C

80E0FBD0E72AC810010A240A220A20E06C76A7A38371E7F8E86C63C150022E1E

BF75A5B446625E8C62BD71A297609B0A260A220A20EDA37EB141A3F8446C9DE7

E19804D8778450D4DD3A199351A87354F26A1C8CAA1001121C0A160A145CBD4C

DA2AFEE5621C5BED8492462015F75F838D1090E401121A0A160A140C4673D526

97552549E0C0DE1DDB35D265AF0C8310121A670A2001FA536CD6E3114C157E94

154DCE3511CC243E4D8AC154DA81595BB48C6EE92912204A4C574A86167D9281

C4EEFE1DBA822E924F81BE11582EDEB6F2B0C3F544C93D1A2102714FB63AC085

407F64740CF01B3DFEC171A23E86971C840512FC6BF8341D06521A680A21008B

6F457EBD9B5ABFD5D00ABD73EEA1F2BD71B4E977C624FA5DD403811A523E0F12

2000AF4D6BF956B5E896FA67A3375657FA4D996374183171B5EBEEA4E702AD06

C11A2102714FB63AC085407F64740CF01B3DFEC171A23E86971C840512FC6BF8

341D06521A690A2100DAD20F9897078815D2DFFED5ECE139C14DC404BE66C20F

87E8A8EC07F0BF1FE0122100E09A38912620430BBC4DFF7D89CB6CB325D74600

5157B5454EE8EDBCA8DCA3651A2102714FB63AC085407F64740CF01B3DFEC171

A23E86971C840512FC6BF8341D0652

Table 1: Raw hex data of block 1947 as shown in the Brabocoin GUI; blue is, sort of, the
Block header, red is the Coinbase transaction, and green is Transaction 1.

We say in the capture of Table 1 that the blue data is “sort of” the block header. The true
block header that serves as input to the hash operation producing the block hash is slightly
different. See Section 6.1 for details.

Many values are given in Base64 encoding, we will not bother you with that1 or with details
of JSON. It is more important that we look at the raw hex data structure, as that is where
the input for hashes and digital signatures comes from. This raw hex data is presented in
Table 1.

For now it is important to see that the block is split into the “Block header” part which
consists of the first 6 fields, and the “Transactions” part.

4 Block header data

The Block header of block 1947 consists of the blue bytes in Table 1, we will explain this in
detail. Raw hex means that every byte (8 bits) is denoted by one octet2, consisting of two
“hex” characters from Table 2.

hex bits

0 0000

1 0001

2 0010

3 0011

hex bits

4 0100

5 0101

6 0110

7 0111

hex bits

8 1000

9 1001

A, a 1010

B, b 1011

hex bits

C, c 1100

D, d 1101

E, e 1110

F, f 1111

Table 2: Hexadecimal characters; the Brabocoin GUI uses uppercase, the Brabocoin Calcu-
lator uses lowercase.

1The Brabocoin Calculator has a built-in Base64 encoder and decoder.
2Actually, octet can be taken as a synonym for byte; we will use the word “byte” further on.

5

For example, the last two bytes of the header: 9B0F, consists of two octets: 9B, 0F, and should
be read as the bits 1001 1011 0000 1111.

We split up the header into the 6 fields, and highlight more about the structure in Table 3.

field key length data

networkId 08 01

previousBlockHash 12 22 0A2000000007B63D8A355FFCD59DD7377B

2CA406C3118FF026AC9CED82A022A8AF19

merkleRoot 1A 22 0A2024A38D24AFEDD645966B8449DCA537

5A4FABF030F8397522B2E5542025462D16

targetValue 22 1F 0A1D0BEDC64B560508C7CC7DEDE336AF7E

906E7376DDA00000000000000000

nonce 2A 05 16045017E4

blockHeight 30 9B0F

Table 3: The Block header of block 1947 dissected, blue is a hash value (though the
targetValue here misses the leftmost 6 zero values).

The structure in this data is according to Google’s “proto3” encoding. We only give relevant
details here and will not describe the full proto3 standard3. See Section 10 for a few more
relevant details of proto3 you might find interesting if you’re a real nerd4.

The first byte of each field is a so called key5. It can be seen as an indication for the meaning
of the data following it, namely networkID, etc. It also indicates the type of the data that
follows. Two types are present here: the keys 08 and 30 are followed by data of the type
“varint”, while the keys 12, 1A, 22 and 2A are followed by data of the type “length-delimited”.

A varint is an encoding of an integer. For example, 01 stands for the integer 1, and 9B0F

stands for the integer 1947. See Section 10.2 if you want to really understand this.

A length-delimited structure starts with a varint that represents the bytelength of the following
object. For example: the nonce field in block 1947 is 2A0516045017E4, here the first byte is
the key, telling that this is the nonce, and that the following structure is length-delimited, so
we expect next a varint, and its value is 5. So the next 5 bytes form the nonce.

The previousBlockHash field has a length of 34 bytes. Those 34 bytes again have a proto3
structure, so the first byte 0A is a key, here meaning “byte array”, length-delimited. So the
next byte 20 is a varint with value 32, and the following 32 bytes are the actual value of the
hash of the previous block. This you can check in Figure 1 at block 1946.

The merkleRoot field has the same structure. See Section 6.3 for how to verify it.

The targetValue field contains the upper bound for the Brabocoin hash puzzle. Here the
3 leading zero bytes have been left out, because this hash value is treated as an integer in
comparing it with actual block hashes. The target is the same in all blocks, its value is
3216× 1065, see [BDEW1].

3See https://developers.google.com/protocol-buffers/docs/overview.
4There’s nothing wrong with being a nerd. I’m one myself.
5Not to be confused with a cryptographic key...

6

https://developers.google.com/protocol-buffers/docs/overview

5 Transaction data

Figure 4: Block 1947 Transaction 1 data as shown in the Brabocoin GUI.

In the Brabocoin GUI, both on the “Blockchain” tab in the “Current state” page, and on
the “Transaction history” tab on the “Wallet” page you can access transactions. There is
a button “Show data”, that lets you choose between unsigned and signed (the difference is
whether the signatures are included or not). See Figure 4 for a signed transaction. You can
also find transactions in the blocks. In the Brabocoin Viewer, use the “Transaction View”,
see Figure 5 for the same transaction.

Note that the transaction raw data do not include the proto3 key and length fields.

In block 1947 two transactions are present, filling up the entire remainder of the block after
the header. A transaction is a length-delimited structure beginning with the key 3A. In the
block’s raw data, after the block header ending in 9B0F, you see 3A27, indicating the start
of a transaction (key 3A) of byte length 39 (varint 27). This is the coinbase transaction.
Immediately after these 39 bytes you see 3AEE03, that’s where the second transaction starts.
The first bytes are 3AEE03, here 3A is the key, and EE03 is a varint, representing the number
494. Indeed the remainder of the block has 494 bytes.

7

Figure 5: Block 1947 Transaction 1 data as shown in the Brabocoin Viewer.

5.1 Normal transaction

We first look at the second, “normal” transaction, i.e. block 1947’s Transaction 1, see Figures
4 and 5. A transaction consists of a number of inputs, a number of outputs, and for each
input a signature. So it should not come as a surprise to observe in the raw data what is
shown in Table 4.

field key length data

input 0A 26 0A220A20...2AC81001

input 0A 24 0A220A20...A297609B

input 0A 26 0A220A20...8CAA1001

output 12 1C 0A160A14...1090E401

output 12 1A 0A160A14...0C831012

signature 1A 67 0A2001FA...341D0652

signature 1A 68 0A21008B...341D0652

signature 1A 69 0A2100DA...341D0652

Table 4: The structure of Block 1947 Transaction 1.

Apparently here the keys are 0A, 12, 1A, standing for input, output and signature respec-
tively. So meanings of keys depend on the context, see Section 10.1.

The structure of a input field, here shown for the first input in the example, is in Table 5.
The hash value is a transaction hash, used as an identifier. The index (a varint) is the output
index in the referred transaction. If there is no index field (as in the second input), the index
value should be taken 0.

8

field key length data

transaction 0A 22 0A20986E8F01C0E7C6D6428BF3E4C9E07F

B148F7FF7AE8AF27A96C80E0FBD0E72AC8

index 10 01

Table 5: An input in Block 1947 Transaction 1; blue is a hash.

The structure of an output field, here shown for the first output in the example, is in Table
6. The address is given in Base58 encoding. The amount is in Brabocoin cents, here 90E401

encodes the number 29200, see Section 10.2.

field key length data

address 0A 16 0A145CBD4CDA2AFEE5621C5BED8492462015F75F838D

amount 10 90E401

Table 6: An output in Block 1947 Transaction 1; blue is a Brabocoin address.

The structure of an signature field, here shown for the first signature in the example, is in
Table 7. The first two values are r and s, the third is the public key, in compressed form.
Here the integers are not in varint format but in raw two’s complement byte format6.

field key length data

r 0A 20 01FA536CD6E3114C157E94154DCE3511

CC243E4D8AC154DA81595BB48C6EE929

s 12 20 4A4C574A86167D9281C4EEFE1DBA822E

924F81BE11582EDEB6F2B0C3F544C93D

pubKey 1A 21 02714FB63AC085407F64740CF01B3DFEC1

71A23E86971C840512FC6BF8341D0652

Table 7: A signature in Block 1947 Transaction 1.

Note the meaning of the keys here. Also note that the three signatures were created by
the same private key, as the three signatures have identical public keys (it is possible that
signatures in one transaction have different public keys).

FInally note that the Brabocoin Viewer may omit leading zeroes in the r and s fields, as it
sees those values as numbers. For numerical verification this does not matter.

5.2 Coinbase transaction

A Coinbase transaction is a lot simpler than a normal transaction, as there are no inputs and
thus also no signatures, and only one output. Actually there is an input field there, but its
hash field just consists of one zero byte (signalling that this is a coinbase transaction), and
for the index the block height is given. The output address is the address of the miner, and
the amount (in the example BRC 10.10) collects both the mining fee and the transaction fee.

6For positive numbers this means that the first bit of the first byte should be a 0, if necessary a complete
zero byte is added at the front.

9

6 Verifying hashes

6.1 Block hash

The way the Block hash is computed in Brabocoin does not use the proto3 structure but
concatenates the values of the fields as follows:

• the networkID value, in a 4 byte format, in the presently running Brabocoin system
this is always 00000001;

• the previousBlockHash, the first blue value in Table 3;

• the merkleRoot value, the second blue value in Table 3;

• the targetValue, the third blue value in Table 3;

• the blockHeight value in a 4 byte format, for 1947 this is 0000079B;

• the nonce value, in two’s complement format, see Table 3.

Note that blockHeight and nonce have been swapped. The resulting input for the Double
SHA256 Block hash for block 1947 is given in Table 8. Note that it is identical to the contents
of the field “block hash input” in the “Block View” of the Brabocoin Viewer. For this input
the SHA256 is
7115a11a3fe28c913cb7e62a0933fb3b2a9db67b1d275b8c11973aad1d9da21f,
and the SHA256 of this SHA256 value is
0000000851fadaa527d54ffe73da22b6716ad40abd003b24362890aa267849e4.

0000000100000007B63D8A355FFCD59DD7377B2CA406C3118FF026AC9CED82A0

22A8AF1924A38D24AFEDD645966B8449DCA5375A4FABF030F8397522B2E55420

25462D160BEDC64B560508C7CC7DEDE336AF7E906E7376DDA000000000000000

000000079B16045017E4

Table 8: Input for the Block hash computation of block 1947.

Figure 6: The hash puzzle solved for block 1947.

10

Here the miracle has happened: this is a hash that, seen as an integer, is indeed below the
target value. See Figure 6.

6.2 Transaction hash

A Transaction hash simply is a double SHA256 hash over the signed transaction data, i.e. the
transaction raw bytes, including the signatures. For Transaction 1 of block 1947 the input to
this computation thus is given as the green data in Table 1, but without the key and length
fields, so starting with 0A260A22..., and then all the way to the final...341D0652. Note
that this is identical to the contents of the field “transaction hash input” in the “Transaction
View” of the Brabocoin Viewer. Feed this data as one long hex-string into the Brabocoin
Calculator’s “in” field in the “Utilities” window, and click “SHA256”, this gives
ba878908f0b921f1e8b0beea2d5a4c5ff80213d69fe448e6493dcaba16191f35.
Then feed this value again to the “in” field and again click “SHA256”, this gives
e4159a5f01472150e1f8779065cb6ea7968de6c93ed753788318f2c97b76c3da.

This is indeed the Transaction hash as shown in the Brabocoin GUI, and also in Figure 4.

6.3 Merkle root

The Merkle root computation follows a Merkle tree structure, see Figure 7 below for an
example with 11 transactions. The transaction hashes are at the bottom row, and hashes
then are combined two at a time onto a higher level row in the tree, where the last element
of a row with an odd number of elements simply is copied to the row above (in contrast to
Bitcoin, where in such a case the last element is repeated). This is repeated until only one
hash is left: the Merkle root at the top of the tree.

Figure 7: The Merkle tree for a block with 11 transactions, h0, . . . , ha on the bottom
row are the 11 transaction hashes, and going up one row is done by the rule hxy =
SHA256(SHA256(hx‖hy)) for any strings x, y, where ‖ denotes concatenation of hashes.

In the case of block 1947 there are only two transaction hashes, for the Coinbase transaction:
3fcbb0faa570e576f09e92d9541f90d05c1c57b0d6f367c09c35b1c37c4ffd0f, and for Trans-
action 1: e4159a5f01472150e1f8779065cb6ea7968de6c93ed753788318f2c97b76c3da. The
Merkle root can easily be verified using the Brabocoin Calculator: the SHA256 of the SHA256

11

of 3fcbb0fa...7c4ffd0fe4159a5f...7b76c3da is
24a38d24afedd645966b8449dca5375a4fabf030f8397522b2e5542025462d16,
which is exactly the value in the merkleRoot field.

7 Verifying signatures

The input for computing the signature on an input actually is the complete unsigned trans-
action, i.e. the transaction without the signatures. For block 1947 this input data is given
in Table 9, see also the “signature input” field in the “Transaction View” of the Brabocoin
Viewer, and this can be easily verified with Tables 4 and 1.

0A260A220A20986E8F01C0E7C6D6428BF3E4C9E07FB148F7FF7AE8AF27A96C80

E0FBD0E72AC810010A240A220A20E06C76A7A38371E7F8E86C63C150022E1EBF

75A5B446625E8C62BD71A297609B0A260A220A20EDA37EB141A3F8446C9DE7E1

9804D8778450D4DD3A199351A87354F26A1C8CAA1001121C0A160A145CBD4CDA

2AFEE5621C5BED8492462015F75F838D1090E401121A0A160A140C4673D52697

552549E0C0DE1DDB35D265AF0C831012

Table 9: Input for the double hash computation of Block 1947 Transaction 1.

Feed this data as one long hex-string into the Brabocoin Calculator’s “in” field in the “Utili-
ties” window, and click “SHA256”, this gives
78943053a4cc71b52ede329f06efe2db7c4f80fd8f92c10fd90f1d8c605eeb33.
Then feed this value again to the “in” field and again click “SHA256”, this gives
f43ab8e4ed4143af1b3cbd2e11b34b98a15aac9ff37aaf0ddb9e1f19c991eefd.
This is the Double SHA256 hash value that is used as input for the signature generation and
verification. Note that for all signatures the same data is signed. It is however possible that
for different inputs different keys are used, so indeed for each input there should be a separate
signature.

For the verification of the first signature of block 1947 we now have data as in Table 10,
these data can also be seen in the signature block of the “Transaction View” of the Brabocoin
Viewer (except for the hash).

h f43ab8e4ed4143af1b3cbd2e11b34b98a15aac9ff37aaf0ddb9e1f19c991eefd

r 01FA536CD6E3114C157E94154DCE3511CC243E4D8AC154DA81595BB48C6EE929

s 4A4C574A86167D9281C4EEFE1DBA822E924F81BE11582EDEB6F2B0C3F544C93D

Q 02714FB63AC085407F64740CF01B3DFEC171A23E86971C840512FC6BF8341D0652

Table 10: ECDSA verification data for the input in Table 9; Q is the public key.

The values of h, r and s are just the hexadecimal representations of the numbers. The public
key is in compressed form, this means the following: if the point on the Brabocoin curve has
coordinates (x, y), then for given x there are only 2 possibilities for y (the so called square
roots of x3 + 7), if the one is y1 then the other is p − y1. One of these is even, the other
one is odd. The compressed form of the point (x, y) then consists of the bytes of x, preceded
with 02 if y is even, and with 03 if y is odd. The Brabocoin Calculator can switch between
compressed and uncompressed form (but only when hexadecimal representation is chosen).
There exists an efficient algorithm for computing square roots modulo p.

12

Further the Brabocoin parameters are needed, they are p, n and the generator G, these
parameters are available in the Brabocoin Calculator.

Verification of the signature now is the following (see [BDEW1], or [dW]):

• compute u1 = hs−1 (mod n),

• compute u2 = rs−1 (mod n),

• compute the point R = u1G + u2Q,

• verify that its x-coordinate is equal to r.

We show how to do this with the Brabocoin Calculator. Make sure it is in hexadecimal and
compressed mode.

• computation of u1:

– enter s in the field b of the “Modular Calculator”,

– enter h in the field a,

– copy n to the field m,

– click “a/b”, then the field c contains u1, move it to the field u on the “Clipboard”,

• computation of u2:

– leave s in the field b, and leave n in the field m,

– enter r in the field a,

– click “a/b”, then the field c contains u2, move it to the field v on the “Clipboard”,

• computation of u1G:

– copy G to the field A in the “Elliptic Curve Calculator”,

– copy u1 from the field u to the field k,

– click “kA”, then the field C contains u1G, move it to the field P on the “Clip-
board”,

• computation of u2Q:

– enter the public key Q in the field A in the “Brabocoin Elliptic Curve Calculator”,

– copy u2 from the field v to the field k,

– click “kA”, then the field C contains u2Q, move it to the field Q on the “Clip-
board”,

• computation of R = u1G + u2Q:

– copy u1G from the field P to the field A,

– copy u2Q from the field Q to the field B,

– click “A+B”, then the field C contains R.

In the field C there now is a compressed point. Disregard its first byte, the remaining bytes
form the x-coordinate, that should be equal to r (which still might be visible in the field a).

In Table 11 we show the values found for the first signature in block 1947.

13

u1 cec1a76523eb8ff4e56ab2e992c1dd873e38b52989f237894f0922c4c24751ee

u2 66b68c471c6b963469db3a436057f2136b52ecce3ff81d4829544fd459bf4d73

u1G 0310b65f3aa45c8659faa8ba4740b9264b6c550096e6c422a4e17a86c47488d765

u2Q 02d872fe0cbff1ef06271949808764652cd0f4eb070487ac738d297b36948d6e81

R 021fa536cd6e3114c157e94154dce3511cc243e4d8ac154da81595bb48c6ee929

Table 11: Verification results for the signature in Table 10.

Indeed this signature verifies correctly.

8 Verifying public keys

The previous section only treated the cryptographic verification of one signature, but assumed
that the proper public key was used. For real-life verification this assumption has to be verified
as well. This means that one should check that the public key used in the signature verification
is the same as the public key that is behind the Brabocoin address that was used in the inputs.

The public key coming with the signatures is the Q given in Table 10 as
02714FB63AC085407F64740CF01B3DFEC171A23E86971C840512FC6BF8341D0652.
In the transaction inputs however the Bitcoin address receiving the money is not directly
given. Only the transaction hash and an index are given there. So we should look up this
transaction and look at its details.

The transaction hash in the first input is shown in Table 5:
986E8F01C0E7C6D6428BF3E4C9E07FB148F7FF7AE8AF27A96C80E0FBD0E72AC8.
Note that its transaction index is also shown, it is 1. In the Brabocoin GUI it is not clear
what the amount of this input is. It is in general cumbersome to find a transaction some-
where in the blockchain. This is where the Brabocoin Viewer comes in very handy, because
when it reads the database at startup, it already does a lot of additional bookkeeping that
now turns out to be very useful. In the input block it already shows the amount of BRC
79.79. Now, double clicking on the “referenced transaction hash” immediately shows in
the “Transaction View” this transaction, which turns out to be in block 1946. Select the
output with index 1, which is indeed for the amount of BRC 79.79, and it is to address
127uWRgK8YHUDhpthUXMSkffSxVjuU9F5T. The Brabpcoin Viewer even shows in which trans-
action it has been spent, which the Brabocoin GUI would not be able to show easily.

Brabocoin addresses are computed as Base58(RIPEMD160(SHA256(pubKey))), where the
public key is in compressed form. This is easily done with the Brabocoin Calculator, The
results for the public key Q of Table 10:
SHA256: 600fa825dc12f6d063444536336529b4fdef528f0c01709efc542bb53c4fa0c5.
RIPEMD: 0c4673d52697552549e0c0de1ddb35d265af0c83.
Base58: 127uWRgK8YHUDhpthUXMSkffSxVjuU9F5T.
So this indeed confirms that the spender of this transaction is entitled to the claimed inputs.

Let’s also check the output addresses. The first, Coinbase transaction, has as output address
0c4673d52697552549e0c0de1ddb35d265af0c83.
Note that this is exactly the RIPEMD(SHA256(Q)) as found above. So this is the address of
the miner of block 1947, as the mining and transaction fees go to the miner.

The second transaction, Transaction 1, has two outputs, the first one having address
5CBD4CDA2AFEE5621C5BED8492462015F75F838D,

14

and the second one having address
0c4673d52697552549e0c0de1ddb35d265af0c83.
This second output address is where the change money goes to; this happens to be the miner’s
address, so this transaction originates from the miner himself. To find the Brabocoin address
of the recipient of the transaction money, compute the Base58 of the output address:
Base58(5CBD...838D) = 19TMwTWsUsKD39Xv6f9vKLmf9d4kfGExND.

9 Verifying amounts

Let us compare inputs and outputs in the Transaction 1 of block 1947 (the Brabocoin Viewer
gives this information immediately, but it’s useful to ckeck it by hand). There are 3 inputs7.

Input 0 has transaction hash 986E.... This transaction can be found in Block 1946 as
Transaction 2. We need the output with index 1. This has address 127u.... and an amount
of BRC 79.79.

Input 1 has transaction hash E06C.... This transaction can be found in Block 1945 as
Transaction 7. We need the output with index 0. This has address 127u.... and an amount
of BRC 200.00.

Input 2 has transaction hash EDA3.... This transaction can be found in Block 1946 as
Transaction 1. We need the output with index 1. This has address 127u.... and an amount
of BRC 12.49.

So the total input amount is BRC 292.28.

Transaction 1 in block 1947 has two outputs.

Output 0 is to address 5CBD... for an amount of BRC 292.00.

Output 1 is to address 0c46... for an amount of BRC 0.18.

So the total output amount is BRC 292.18.

The difference between input and output amounts is exactly the transaction fee of BRC 0.10
that can be found in the Coinbase transaction and that in this way is collected by the miner.

So this is what happened: the owner of address 0c46... (a.k.a. 127u....) wanted to pay
BRC 292.00 to address 5CBD... (a.k.a. 19TM....), and he allowed a transaction fee of BRC
0.10. He collected from his unspent coins enough to get an amount at least as big as BRC
292.10; the three inputs he found happened to add up to 292.28. So this is why the transaction
has a second output of 0.18 to his own address, i.e. the change money.

Note that blockchains work fundamentally different from bank accounts. A user receiving
some coins in a transaction knows this because his address is mentioned in an output. But
there is no direct correspondence with one (or a few) input(s): the transaction may have a
number of inputs signed by different private keys, and the money from those inputs may be
divided somehow over a number of outputs to different addresses. In block 1947 the inputs
all came from the same address, so there the origin of the money is at least somewhat clear.

7Note that computer scientists start counting at 0, which is a horrible habit.

15

10 Proto3 details

10.1 key

We found as relevant keys: 08, 0A, 10, 12, 1A, 22, 2A, 30, 3A, and their meaning depends on
the context. Here is how this works: the first 5 bits of a key give an index, the last three bits
give a type. Type 0 means varint, type 2 means length-delimited. See Tables 12 and 13. The
index simply refers to the fields in the data structure that is being used at that moment.

key index type

08 1 0
0A 1 2
10 2 0

key index type

12 2 2
1A 3 2
22 4 2

key index type

2A 5 2
30 6 0
3A 7 2

Table 12: Proto3 keys.

object type: Block

index object name object type

1 networkID varint

2 previousBlockHash Hash

3 merkleRoot Hash

4 targetValue Hash

5 nonce bytes

6 blockHeight varint

7 transactions (repeated) Transaction

object type: Transaction

index object name object type

1 input (repeated) Input

2 output (repeated) Output

3 signature (repeated) Signature

object type: Hash

index object name object type

1 value bytes

object type: Input

index object name object type

1 referencedTransaction Hash

2 referencedOutputIndex varint

object type: Output

index object name object type

1 address Hash

2 amount varint

object type: Signature

index object name object type

1 r bytes

2 s bytes

3 publicKey bytes

Table 13: Proto3 data structures in Brabocoin.

10.2 varint

The proto3 encoding of nonnegative integers works as follows (we do not treat negative integers
here as it’s not relevant for Brabocoin). First write the integer out in binary, i.e. in bits. Add
as many zero bits, but at least one8, to the front as needed to make the total number of bits
a multiple of 7. Group the bits into 7-tuples, add a 0 to the front of the first 7-tuple, add a 1

to the front of every other 7-tuple, so that you get full bytes. Then reverse the list of bytes9.

Here’s an example: 1947 is in binary 11110011011, so we add three 0’s to the front:
00011110011011, split into 7-tuples: 0001111 0011011, add a 0 and a 1 to get bytes:
00001111 10011011, reverse the order: 10011011 00001111, and translate to raw hex: 9B0F.
We’ve seen that one before.

8This is important, as the two’s complement representation is used.
9Software engineers say: convert from big endian to little endian. Endianness problems are responsible for

many disasters that have plagued (the computing part of) mankind in many ways over the last 60 years.

16

Here’s an other example, where we do the conversion backwards, from proto3 varint to normal
integer. In block 1947, there is (the underlined bytes in Table 1) the bytes ...1090E40112....
Here 10 is a key indicating that a varint follows, and as this is not a length-delimited type,
we do not know a priori how many bytes this varint structure has. Indeed, that is exactly
the reason for having added the 8th front bit to every 7-tuple: scan the following bytes for
their first bit only; as soon as a first bit 0 is encountered, that must be the final byte of the
varint. In this case the bytes 90 and E4 both start with a bit 1, and the next byte 01 starts
with a bit 0, so the varint is actually 90E401, and the next bytes 12... belong to the next
structure in the block. We write 90E401 in bits: 10010000 11100100 00000001, reverse the
order: 00000001 11100100 10010000, remove the first bit in every byte: 0000001 1100100

0010000, remove the leading zeroes: 111001000010000, and that is the binary representation
of our positive integer, which is 29200.

11 Conclusion

This document shows that it still quite a hassle to understand, at byte level, how hashes and
digital signatures are used in practice. As both cryptographic tools are extremely sensitive
(and should be!) for changes in the inputs, an important part in building trust in crypto-
graphic software is the absolutely correct handling of input data. Preferably cryptographic
verification should be done using software that has been developed completely independently
from the software under verification10. This is what we wanted to show in this document.

We need your feedback

We very much appreciate any questions or feedback you might have, on the Brabocoin soft-
ware, the Brabocoin Calculator, and on this document.

Acknowledgements

I am grateful to Dennis, David, Sophie and Sten for, in the first place, having developed
Brabocoin, and also for their technical help in getting Brabocoin running on Linux, and in
writing this document.

References

[BDEW1] D.P. van den Berg, D.J.C. Dekker, S. van den Eerenbeemt and S. Wessel, “Brabo-
coin, an educational cryptocurrency based on Bitcoin”, Bachelor Thesis, Faculty
of Mathematics and Computer Science, Eindhoven University of Technology, May
13, 2019. Online: https://brabocoin.org/doc/res/report.pdf.

[BDEW2] D.P. van den Berg, D.J.C. Dekker, S. van den Eerenbeemt and S. Wessel, “User
manual for Brabocoin, an educational cryptocurrency based on Bitcoin”, Faculty
of Mathematics and Computer Science, Eindhoven University of Technology, April
9, 2019, version 0.4. Online: https://brabocoin.org/doc/res/manual.pdf.

10The Brabocoin Calculator has indeed been developed completely independent of the Brabocoin software.

17

https://brabocoin.org/doc/res/report.pdf
https://brabocoin.org/doc/res/manual.pdf

[dW] Benne de Weger, “ISTS 3USU0 Cryptography”, Lecture Notes, Faculty of Math-
ematics and Computer Science, Eindhoven University of Technology, November
2019, version 0.6.

18

	Introduction
	Software Installation
	Block 1947
	Block header data
	Transaction data
	Normal transaction
	Coinbase transaction

	Verifying hashes
	Block hash
	Transaction hash
	Merkle root

	Verifying signatures
	Verifying public keys
	Verifying amounts
	Proto3 details
	key
	varint

	Conclusion

